logo
Business Award

Blog Layout

Singularities and Non-Manifold Topology | The Seven Deadly Sins of 3D Part Modeling 03

Paul Munford • Feb 13, 2019
Singularities and Non-Manifold Topology | The Seven Deadly Sins of 3D Part Modeling 03

Have you ever tried to model a shape with Autodesk Inventor and failed? I have, many times!

In the previous post in this series, we learned about the 3D Modelling deadly sins of ‘Near Coincidence’ and ‘Sliver faces’ , and we learned how to avoid them!

In this post we’ll learn why Singularities are not a good thing, and we’ll understand how Inventor uses the concept of Manifold Topology to define our solid objects.

The 3D Modelling Deadly Sin of Singularities

In Part four of ‘Get Smart with Inventor Modelling’ we learned that the Autodesk Inventor Shape Manager (ASM) defines a loft as a four sided shape. ASM will fit the lofted surface to the profiles we supply.

If we supply three profiles, ASM will still return a surface, but the fourth edge will have collapsed into a single point .

This single point is called a Singularity . Singularities can also be formed when revolving a surface.

Singularities themselves aren’t a problem, but they can cause problems downstream, particularly when offsetting surfaces.

Detecting singularities in Autodesk Inventor using curvature comb analysis.

Detecting singularities in Autodesk Inventor using curvature comb analysis.

When you are having problems with a non-four-sided surface, the easiest way to diagnose Singularities is with the Curvature Comb Analysis Tool. If the combs converge on a single point – you have a singularity!

Whenever you can – try swapping the problem surface with a boundary patch . The boundary patch tool always creates a four-sided surface which is Trimmed to the input geometry (Instead of Fitted ), so singularities are avoided.

The 3D Modelling Deadly Sin of Non-Manifold topology

‘Manifold Topology’  describes how Inventor recognizes that a shape is a solid. If the shape is open Inventor will create a surface model. If the shape is closed Inventor knows that it has a solid.

There are four conditions that must meet met for a shape to be consider ‘closed’.

  1. Internal voids must be completely enclosed by faces.
  2. Faces must have an ‘inside’ and an ‘outside’.
  3. Each edge must only be shared by two faces.
  4. Each vertex must only be shared by three edges.
Examples of non-manifold geometry in an Autodesk Inventor Model

Examples of non-manifold geometry in an Autodesk Inventor Model

Any topology that breaks these rules is considered ‘Non-Manifold’, and we will struggle to get the results we need.

Non-Manifold topology causes ambiguities which Inventor can find confusing. The classic example is two cubes sharing an edge. This edge is non-manifold, because four faces are sharing the same edge.

When we try to fillet this edge, ambiguity arises because there are four equally valid solutions. Which one solution do we expect?

If you are having trouble with non-manifold geometry, try re-ordering the feature tree, creating multiple bodies or adding temporary supporting structure.

Loose Tolerances | The Seven Deadly Sins of 3D Part Modeling 04

In the next post in this series we’ll learn how and when to use the Loft Command, when to use a patch and why they are different.

This blog post is based on an Autodesk University class, originally by Jake Fowler and later updated by Inderjeet Wilkhu and Paul Munford. You can watch a recording of the class, and download a handout that goes with this presentation from the Autodesk University website here:
CP122682: The Inventor 7 Deadly Sins of 3D Part Modeling

3D Printing Services and Technology
by Dwight Mitchell 16 Jul, 2024
3D printing, also known as additive manufacturing, has transformed industries by enabling the creation of complex geometries that traditional methods can't achieve.
3D Printing: Innovations, Challenges, and Applications
by Dwight Mitchell 10 Jul, 2024
The world of 3D printing or Additive manufacturing is changing at a neck-breaking speed with new technology and new materials entering the market frequently.
3D Printing with Polystyrene (High Impact Polystyrene (HIPS)):
by Dwight Mitchell 04 Jul, 2024
3D Printing with Polystyrene (High Impact Polystyrene (HIPS))
Comparative Analysis of 3D Printing Filaments
by Dwight Mitchell 02 Jul, 2024
I know it can be confusing to know which is the right material and also which is the best brand to use.
Threaded Inserts in 3D Printed Products
by Dwight Mitchell 27 Jun, 2024
One of the shortfalls of printing a functional part in plastic is that it can wear very quickly especially if you are producing parts that need to or have a screw fixture.
Which is the Best TPU Filaments in 2024?
by Dwight Mitchell 18 Jun, 2024
The Quality of the prints that the Creality K1 and K1 max produce is fantastic
 Materials for your project, is ASA or ABS or PC right for you?
by Dwight Mitchell 17 Jun, 2024
When having to decide on the type of materials to choose for your project, the choice can often be confusing as 3D Print Filament manufacturers and suppliers
ASA 3D Printing Filament: A Comprehensive Guide
by Dwight Mitchell 15 May, 2024
ASA 3D Printing Filament: A Comprehensive Guide
Reverse Engineering and Hyper 3D Printing
by Dwight Mitchell 05 Apr, 2024
In the rapidly evolving world of manufacturing, staying ahead means not just keeping pace with current trends but pre-emptively leaping towards future innovations.
3D Printing: Key Trends Shaping the Future in 2024
by Dwight Mitchell 05 Mar, 2024
Here, we dive into the key trends that are set to redefine the boundaries of 3D printing technology and its applications, ensuring businesses and consumers alike are prepared for the future
More posts
Share by: